Forensic electrochemistry: the electroanalytical sensing of Rohypnol® (flunitrazepam) using screen-printed graphite electrodes without recourse for electrode or sample pre-treatment.

نویسندگان

  • Jamie P Smith
  • Jonathan P Metters
  • Dimitrios K Kampouris
  • Carlos Lledo-Fernandez
  • Oliver B Sutcliffe
  • Craig E Banks
چکیده

The electroanalytical sensing of Rohypnol® (flunitrazepam) is reported for the first time utilising screen-printed graphite electrodes without the requirement for any additional pre-treatment or modification. The methodology is shown to be useful for quantifying low levels (μg mL(-1)) of Rohypnol® in not only buffered solutions but also two internationally favoured drinks: Coca Cola™ and the alcopop WKD™ without any sample pre-treatment. The current analytical approaches for the sensing of Rohypnol® are also summarised within this paper. The niche of this electroanalytical protocol is the lack of the requirement of any pre-treatment of the sample/beverage or electrode modification (cleaning, pre-treatment etc.) for the determination of Rohypnol® in beverages and offers a potential rapid, cost-effective, yet suitably sensitive and accurate screening solution to the problem posed by coloured drinks to products such as the colour changing 'Smart Cup'.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electroanalytical Sensing of Flunitrazepam Based on Screen Printed Graphene Electrodes

We present a new electrochemical sensor for Flunitrazepam using disposable and economic Screen Printed Graphene Electrodes. It was found that the electrochemical response of this sensor was improved compared to Screen Printed Graphite Electrodes and displayed an excellent analytical performance for the detection of Flunitrazepam. Those characteristics could be attributed to the high Flunitrazep...

متن کامل

Screen printed graphite macroelectrodes for the direct electron transfer of cytochrome c.

We report the direct electrochemistry of cytochrome c at screen printed graphite electrodes which exhibits quasi-reversible voltammetric responses without the need for any chemical or electrochemical pre-treatment, use of mediators or nanomaterials. Through voltammetric studies and X-ray photoelectron spectroscopy (XPS) it is shown that carbonyl and carboxylic surface oxygenated species likely ...

متن کامل

Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes.

Recent work has reported the first electroanalytical detection of pindolol using reduced graphene oxide (RGO) modified glassy carbon electrodes [S. Smarzewska and W. Ciesielski, Anal. Methods, 2014, 6, 5038] where it was reported that the use of RGO provided significant improvements in the electroanalytical signal in comparison to a bare (unmodified) glassy carbon electrode. We demonstrate, for...

متن کامل

Forensic electrochemistry: sensing the molecule of murder atropine.

We present the electroanalytical sensing of atropine using disposable and economic screen printed graphite sensors. The electroanalytical determination of atropine is found to be possible over the concentration range of 5 μM to 50 μM with a detection limit of 3.9 μM (based on 3-sigma) found to be possible. We demonstrate proof-of-concept that this approach provides a rapid and inexpensive sensi...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 138 20  شماره 

صفحات  -

تاریخ انتشار 2013